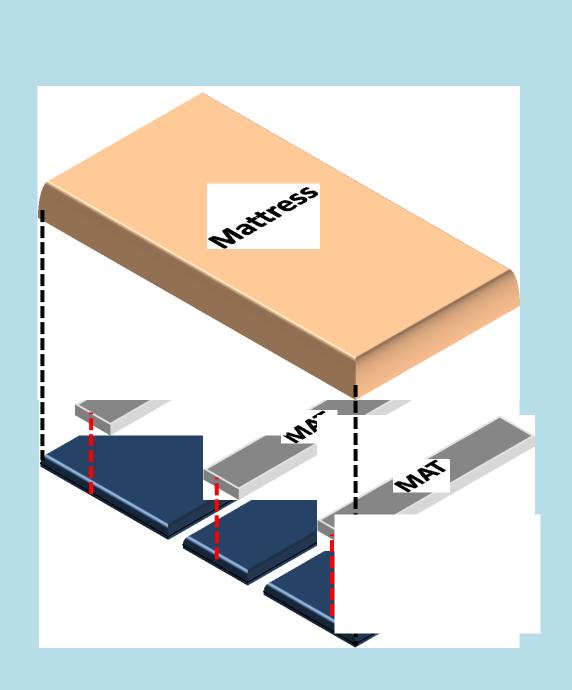
AUTOMATED ASSESSMENT OF MOBILITY IN BEDRIDDEN PATIENTS


Stephanie Bennett, Member, IEEE, Rafik Goubran, Fellow, IEEE, Kenneth Rockwood, and Frank Knoefel.

1. INTRODUCTION

			BL	Example 1 Days 01-03		Example 2 Days 03-06			
	Recorder's Initials		KR	KR	KR	KR	KR	KR	K
	Date Assessed	(DD)	01	15	16	17	18	19	2
		(MM)	01	01	01	01	01	01	0
Score		Day	-14	01	02	03	04	05	0
	BALANCE								
21	Stable ambulation		21						2
14	Stable dynamic stand	ding		14				14	
10	Stable static standing				10		10		
7	Stable dynamic sitting					7			
5	Stable static sitting								
0	Impaired static sitting								
	TRANSFERS								
18	Independent and Vig	orous	18						
16	Independent								10
14	Independentbutslow			14				14	
12	1 person standby				12		12		
11	1 person minimal assistance					11			
7	1 person assist								
3	2 person assist								
0	Total lift								
	MOBILITY								
28	Unlimited, vigorous		28						
26	Unlimited								2
25	Limited >50m, no aid								
21	Unlimited, with aid			21				21	
19	Unlimited with aid, slo	w							
18	With aid >50m				18		18		
16	No aid, limited 8-50m					16			
15	With aid 8-50m								
14	With aid <8m+								
12	1 person standby/+/-	aid							
9	1 person hands-on/+	/-aid							
7	Lying-sitting indeper	dently							
4	Positions self in bed								
0	Needs positioning in	bed							

2. METHODS

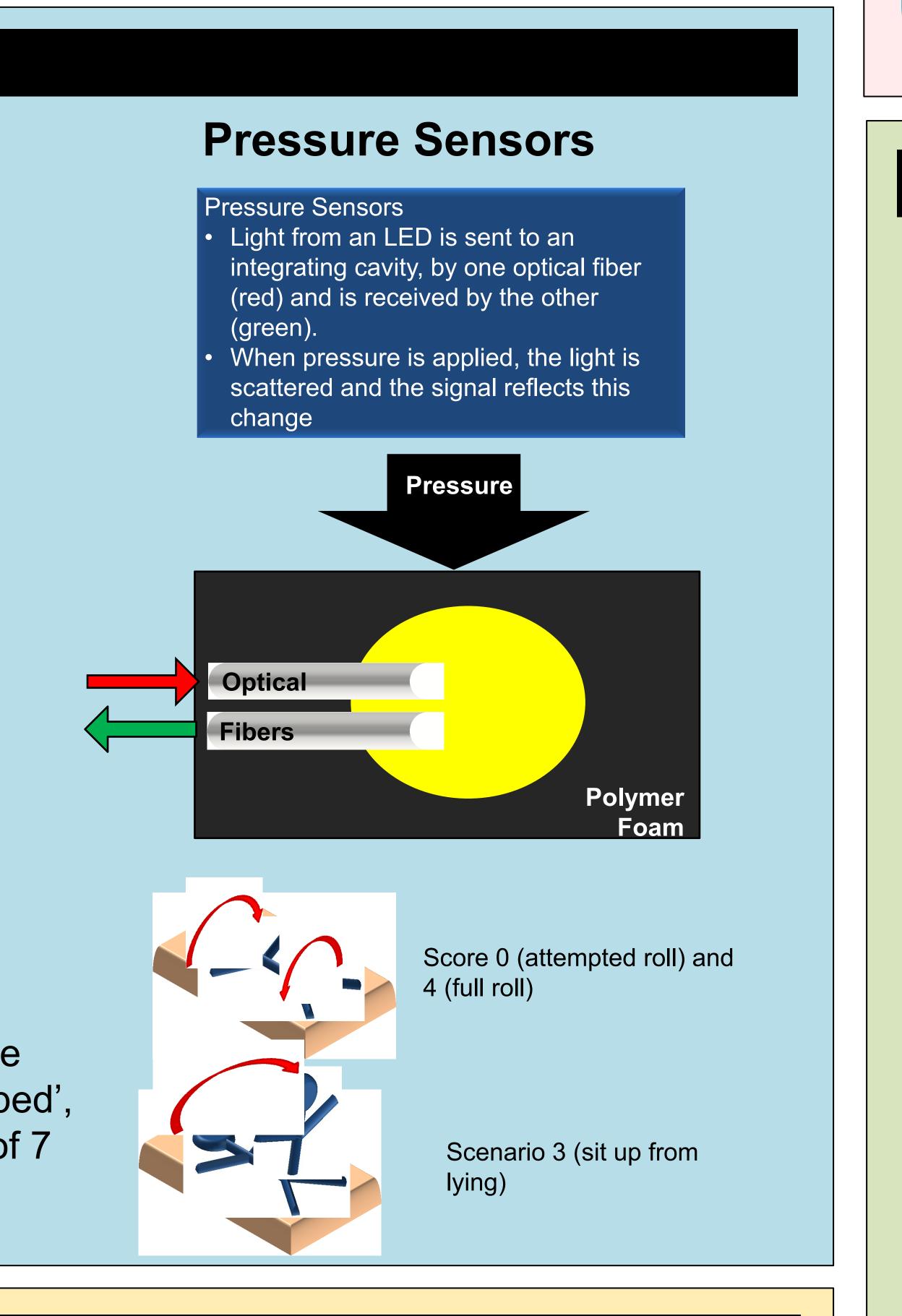
Equipment Set-Up

- One hospital bed was equipped with three pressure mats.
- Each mat contains polymer foam, embedded with a 3x8 fiber optic pressure sensor array.

Experimental Methods

Data was collected while 5 volunteers performed 3 entirely in-bed enactments of HABAM scores. These scores were: a score of 0 for 'Needs positioning in bed', a score of 4 for 'Positions self in bed', and a score of 7 for 'Lying-sitting independently'.

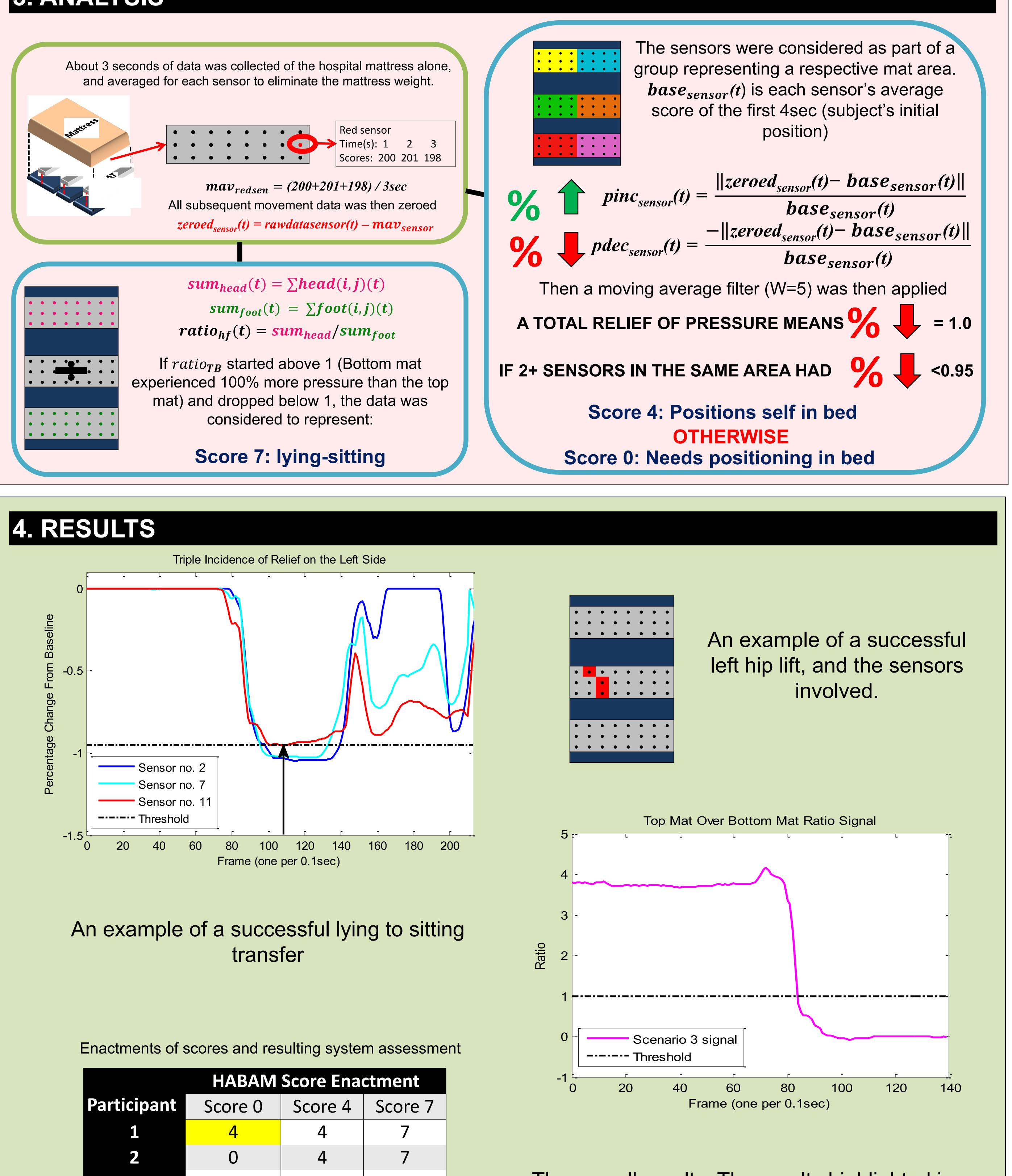
5. CONCLUSION


- Examination of the results indicated that this system is capable of determining between the three HABAM score enactments examined in this paper.
- Examination of data revealed that the system had not assessed incorrectly, but had captured an instance of pressure relief that went unnoticed. This result emphasizes the significance of ubiquitous computing in applications such as the HABAM, as data immeasurable to the eye is captured and recorded.
- The automation of HABAM could not only ensure consistent, reliable assessments and expand upon our knowledge of movement in the immobile, but could also emphasize the importance of pervasive computing in the assessment and tracking of immobility.

• In older patients, impaired mobility is a complex phenomenon and can often be a sign of underlying disease [1].

• The Hierarchical Assessment of Balance and Mobility (HABAM) is a clinical tool that monitors elderly patient health by assessing the ability to move, and has been shown to predict morbidity [2].

 The addition of any clinical tool that takes nurses away from patient care is not currently a popular idea, and so the automation of HABAM may be an important informative addition to many hospitals.


• This paper explores a volunteer-based, partial automation of the HABAM tool, focusing on the assessment of in-bed HABAM scores as a precursor to studies in bedridden patients.

ACKNOWLEDGEMENTS: National Sciences and Engineering Research Council (NSERC) of Canada, and industrial and government partners, through the Healthcare Support through Information Technology

3. ANALYSIS

-0.5

	HABAM Score Enactment								
Participant	Score 0	Score 4	Score 7						
1	4	4	7						
2	0	4	7						
3	0	4	7						
4	0	4	7						
5	4	4	7						

6. REFERENCES

1. R. Hubbard, and K. Rockwood, "Mobility and balance in older people," Can. J. Gen. Intern. Med., vol. 5, no. 1 pp. 13-15, April 2010. 2. D. Davis, M. Rockwood, A. Mitnitski, K. Rockwood, "Impairments in mobility and balance in relation to frailty," Arch. Geront. Geriatr., vol.53, no.1, pp.79-83.

The overall results. The results highlighted in yellow were unexpected, but upon review, correct.

